Abstract
Carbon-based materials are promising candidates for enhancing thermal properties of phase change materials (PCMs) without lowering its energy storage capacity. Nowadays, researchers are trying to find a proper porous structure as PCMs support for thermal energy storage applications. In this context, the main novelty of this paper consists in using a ZnO-CNT-based nanocomposite powder, prepared by an own hydrothermal method at high pressure, to obtain porous 3D printed support structures with embedding capacity of PCMs. The morphology of 3D structures, before and after impregnation with three PCMs inorganic salts (NaNO3, KNO3 and NaNO3:KNO3 mixture (1:1 vol% saturated solution) was investigated by scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX). For structure impregnated with nitrates mixture, SEM cross-section morphology suggest that the inorganic salts impregnation started into micropores, continuing with the covering of the 3D structure surface and epitaxial growing of micro/nanostructured crystals, which led to reducing the distance between the structural strands. The variation of melting/crystallization points and associated enthalpies of impregnated PCMs and their stability during five repeated thermal cycles were studied by differential scanning calorimetry (DSC) and simultaneous DSC-thermogravimetry (DSC-TGA). From the second heating-cooling cycle, the 3D structures impregnated with NaNO3 and NaNO3-KNO3 mixture are thermally stable.
Funder
Ministerul Cercetarii, Inovarii si Digitalizarii
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献