Separation of Alcohol-Water Mixtures by a Combination of Distillation, Hydrophilic and Organophilic Pervaporation Processes

Author:

Do Thi Huyen Trang,Mizsey Peter,Toth Andras JozsefORCID

Abstract

It can be stated that in the fine chemical industries, especially in the pharmaceutical industry, large amounts of liquid waste and industrial waste solvents are generated during the production technology. Addressing these is a key issue because their disposal often accounts for the largest proportion of the cost of the entire technology. There is need to develop regeneration processes that are financially beneficial to the plant and, if possible, reuse the liquid waste in the spirit of a circular economy, in a particular technology, or possibly elsewhere. The distillation technique proves to be a good solution in many cases, but in the case of mixtures with high water content and few volatile components, this process is often not cost-effective due to its high steam consumption, and in the case of azeotropic mixtures there are separation constraints. In the present work, the membrane process considered as an alternative; pervaporation is demonstrated through the treatment of low alcohol (methanol and ethanol) aqueous mixtures. Alcohol-containing process wastewaters were investigated in professional process simulator environment with user-added pervaporation modules. Eight different methods were built up in ChemCAD flowsheet simulator: organophilic pervaporation (OPV), hydrophilic pervaporation (HPV), hydrophilic pervaporation with recirculation (R-HPV), dynamic organophilic pervaporation (Dyn-OPV), dynamic hydronophilic pervaporation (Dyn-HPV), hybrid distillation-organophilic pervaporation (D + OPV), hybrid distillation-hydrophilic pervaporation (D + HPV), and finally hybrid distillation-hydrophilic pervaporation with recirculation (R-D + HPV). It can be stated the last solution in line was the most suitable in the terms of composition, however distillation of mixture with high water content has significant heat consumption. Furthermore, the pervaporation supplemented with dynamic tanks is not favourable due to the high recirculation rate in the case of tested mixtures and compositions.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3