Tribological Performance of Diamond Films with Different Roughnesses of Silicon Nitride Substrates and Carbon Source Concentrations

Author:

Lu Feng,Liu TianweiORCID,Bai XuORCID,Wu Yuhou,Wang He,Yan Guangyu

Abstract

Diamond films were deposited on silicon nitride (Si3N4) substrates with three different roughnesses using the method of hot-filament chemical vapor deposition (HFCVD). The tribological properties of the film were studied by changing the deposition time, deposition distance, and methane (CH4) concentration. The friction coefficient, delamination threshold load, and wear rate of the diamond films were tested and calculated using the reciprocating friction and wear test under dry friction conditions. The results show that, when the deposition time is 12 h, the bonding force of the film is the lowest and the friction coefficient is the largest (0.175, 0.438, and 0.342); the deposition distance has little effect on the friction performance. The friction coefficients (0.064, 0.107, and 0.093) of nano-diamond films (NCD) prepared at a 40 sccm CH4 concentration are smaller than those of micro-diamond films (MCD) prepared at a 16 sccm CH4 concentration. The load thresholds before delamination of Ra 0.4 μm substrate diamond film are as high as 40 N and 80 N, whereas the diamond films deposited on Ra 0.03 μm substrates have lower wear rates (4.68 × 10−4 mm3/mN, 5.34 × 10−4 mm3/mN) and low friction coefficients (0.119, 0.074, 0.175, and 0.064). Within a certain load range, the deposition of a diamond film on a Ra 0.03 μm Si3N4 substrate significantly reduces the friction coefficient and improves wear resistance. Diamond film can improve the friction performance of a workpiece and prolong its service life.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3