Abstract
N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC) is a type of quaternary ammonium chitosan derivative with an antibacterial activity superior to the pristine chitosan, but its electrospinnability is limited. In this study, polyvinyl alcohol (PVA) was blended with HTCC to improve the electrospinnability of nanofibers. The electrospinning of PVA–HTCC nanofiber membranes was optimized in terms of structural stability and antimicrobial performance. Based on scanning electron microscopic analysis, the morphology and diameter of the produced nanofibers were influenced by the applied voltage, flow rate of the feed solution, and weight ratio of the polymer blend. An increase in the HTCC content decreased the average nanofiber diameter. The maximum water solubility of the PVA–HTCC nanofibers reached the maximum value of 70.92% at 12 h and 25 °C. The antibacterial activity of PVA–HTCC nanofiber membranes against Escherichia coli was ~90%, which is significantly higher than that of PVA–chitosan nanofiber membrane. Moreover, the antibacterial efficiency of PVA–HTCC nanofiber membranes remained unaffected after 5 cycles of antibacterial treatment. The good antibacterial performance and biocompatibility of PVA–HTCC nanofiber membrane makes them attractive for biomedical and biochemical applications that necessitate sterile conditions.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献