Gas Permeability, Fractional Free Volume and Molecular Kinetic Diameters: The Effect of Thermal Rearrangement on ortho-hydroxy Polyamide Membranes Loaded with a Porous Polymer Network

Author:

Soto CenitORCID,Torres-Cuevas Edwin S.ORCID,Palacio LauraORCID,Prádanos PedroORCID,Freeman Benny D.,Lozano Ángel E.ORCID,Hernández AntonioORCID,Comesaña-Gándara BibianaORCID

Abstract

Mixed-matrix membranes (MMMs) consisting of an ortho-hydroxy polyamide (HPA) matrix, and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Two different HPAs were synthesized to be used as a matrix, 6FCl-APAF and tBTpCl-APAF, while the PPN used as a filler was prepared by reacting triptycene and trifluoroacetophenone. The permeability of He, H2, N2, O2, CH4 and CO2 gases through these MMMs are analyzed as a function of the fraction of free volume (FFV) of the membrane and the kinetic diameter of the gas, allowing for the evaluation of the free volume. Thermal rearrangement entails an increase in the FFV. Both before and after thermal rearrangement, the free volume increases with the PPN content very similarly for both polymeric matrices. It is shown that there is a portion of free volume that is inaccessible to permeation (occluded volume), probably due to it being trapped within the filler. In fact, permeability and selectivity change below what could be expected according to densities, when the fraction of occluded volume increases. A higher filler load increases the percentage of inaccessible or trapped free volume, probably due to the increasing agglomeration of the filler. On the other hand, the phenomenon is slightly affected by thermal rearrangement. The fraction of trapped free volume seems to be lower for membranes in which the tBTpCl-APAF is used as a matrix than for those with a 6FCl-APAF matrix, possibly because tBTpCl-APAF could approach the PPN better. The application of an effective medium theory for permeability allowed us to extrapolate for a 100% filler, giving the same value for both thermally rearranged and non-rearranged MMMs. The pure filler could also be extrapolated by assuming the same tendency as in the Robeson’s plots for MMMs with low filler content.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3