Optimising the Flux Enhancer Dosing Strategy in a Pilot-Scale Anaerobic Membrane Bioreactor by Mathematical Modelling

Author:

Odriozola MagelaORCID,van Lier Jules B.,Spanjers Henri

Abstract

Flux enhancers (FEs) have been successfully applied for fouling mitigation in membrane bioreactors. However, more research is needed to compare and optimise different dosing strategies to improve the filtration performance, while minimising the use of FEs and preventing overdosing. Therefore, the goal of this research is to develop an optimised control strategy for FE dosing into an AnMBR by developing a comprehensive integrated mathematical model. The integrated model includes filtration, flocculation, and biochemical processes to predict the effect of FE dosing on sludge filterability and membrane fouling rate in an AnMBR. The biochemical model was based on an ADM1, modified to include FEs and colloidal material. We developed an empirical model for the FE-induced flocculation of colloidal material. Various alternate filtration models from the literature and our own empirical models were implemented, calibrated, and validated; the best alternatives were selected based on model accuracy and capacity of the model to predict the effect of varying sludge characteristics on the corresponding output, that is fouling rate or sludge filterability. The results showed that fouling rate and sludge filterability were satisfactorily predicted by the selected filtration models. The best integrated model was successfully applied in the simulation environment to compare three feedback and two feedforward control tools to manipulate FE dosing to an AnMBR. The modelling results revealed that the most appropriate control tool was a feedback sludge filterability controller that dosed FEs continuously, referred to as ∆R20_10. Compared to the other control tools, application of the ∆R20_10 controller resulted in a more stable sludge filterability and steady fouling rate, when the AnMBR was subject to specific disturbances. The simulation environment developed in this research was shown to be a useful tool to test strategies for dosing flux enhancer into AnMBRs.

Funder

European Commission

Agencia Nacional de Investigación e Innovación

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3