Exergy Analysis of a Direct Contact Membrane Distillation (DCMD) System Based on Computational Fluid Dynamics (CFD)

Author:

Choi JihyeokORCID,Choi Yongjun,Lee Juyoung,Kim Yusik,Lee Sangho

Abstract

Understanding the energy efficiency of direct contact membrane distillation (DCMD) is important for the widespread application and practical implementation of the process. This study analyzed the available energy, known as exergy, in a DCMD system using computational fluid dynamics (CFD). A CFD model was developed to investigate the hydrodynamic and thermal conditions in a DCMD module. After the CFD model was verified, it was used to calculate the temperature polarization coefficient (TPC) and exergy destruction magnitudes under various operating conditions. The results revealed that slight decreases and increases in the TPC occurred with distance from the inlet in the module. The TPC was found to increase as the feed temperature was reduced and the feed and permeate flow rates were increased. The exergy destruction phenomenon was more significant under higher feed temperatures and higher flux conditions. Although the most significant exergy destruction in the permeate occurred near the feed inlet, the effect became less influential closer to the feed outlet. An analysis of exergy flows revealed that the efficiency loss in the permeate side corresponded to 32.9–45.3% of total exergy destruction.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3