Effects of Chitosan Nanoparticles and 4,4′ Methylene-Diphenyl Diisocyanate on the Polylactic Acid/Poly (Butyleneadipate-Co-Terephthalate) Composite Properties

Author:

Wu Jiaqi12,Wang Limei1,Qi Bin12

Affiliation:

1. College of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China

2. College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China

Abstract

Polylactic acid (PLA) is considered a mature alternative to synthetic plastics made from petroleum by-products, possessing the advantages of good mechanical strength. However, it also has some disadvantages such as brittleness and low toughness. In order to overcome and improve some of these unfavorable properties, PLA/PBAT composites were prepared by blending PLA with Poly (butylene adipate-co-terephthalate) (PBAT), and adding 4,4′-methylene diphenyl diisocyanate (MDI) and chitosan nanoparticles (ChNPs) as compatibilizers to investigate the effects of different compatibilizers on the properties of the composites. The main observations are as follows: FT-IR indicated that MDI did not add new groups, while the addition of ChNPs added a substantial amount of hydroxyl and methylene groups. The addition of both MDI and ChNPs did not have any effect on the crystalline shape of the composites, but could potentially reduce their crystallinity, increase the melt peak temperature, wet the boundary of the PLA and PBAT phases, decrease the size of the dispersed phases, reduce the number of dispersed phases, and improve interfacial compatibility. The incorporation of MDI increased the tensile strength from 13.02 MPa to 19.24 MPa, whereas the addition of ChNPs substantially enhanced the elongation at the break from 3.84% to 19.24%. Furthermore, the inclusion of MDI conferred enhanced moisture resistance, whereas the addition of ChNPs seemed to weaken the resistance to moisture.

Funder

Key Research and Development Project of Jiangsu Province

Science and Technology Program of Suzhou

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3