Polydopamine-Assisted Two-Dimensional Molybdenum Disulfide (MoS2)-Modified PES Tight Ultrafiltration Mixed-Matrix Membranes: Enhanced Dye Separation Performance

Author:

Tian Huali,Wu Xing,Zhang Kaisong

Abstract

Tight ultrafiltration (TUF) membranes with high performance have attracted more and more attention in the separation of organic molecules. To improve membrane performance, some methods such as interface polymerization have been applied. However, these approaches have complex operation procedures. In this study, a polydopamine (PDA) modified MoS2 (MoS2@PDA) blending polyethersulfone (PES) membrane with smaller pore size and excellent selectivity was fabricated by a simple phase inversion method. The molecular weight cut-off (MWCO) of as-prepared MoS2@PDA mixed matrix membranes (MMMs) changes, and the effective separation of dye molecules in MoS2@PDA MMMs with different concentrations were obtained. The addition amount of MoS2@PDA increased from 0 to 4.5 wt %, resulting in a series of membranes with the MWCO values of 7402.29, 7007.89, 5803.58, 5589.50, 6632.77, and 6664.55 Da. The MWCO of the membrane M3 (3.0 wt %) was the lowest, the pore size was defined as 2.62 nm, and the pure water flux was 42.0 L m−2 h−1 bar−1. The rejection of Chromotrope 2B (C2B), Reactive Blue 4 (RB4), and Janus Green B (JGB) in aqueous solution with different concentrations of dyes was better than that of unmodified membrane. The separation effect of M3 and M0 on JGB at different pH values was also investigated. The rejection rate of M3 to JGB was higher than M0 at different pH ranges from 3 to 11. The rejection of M3 was 98.17–99.88%. When pH was 11, the rejection of membranes decreased with the extension of separation time. Specifically, at 180 min, the rejection of M0 and M3 dropped to 77.59% and 88.61%, respectively. In addition, the membrane had a very low retention of salt ions, Nacl 1.58%, Na2SO4 10.52%, MgSO4 4.64%, and MgCl2 1.55%, reflecting the potential for separating salts and dyes of MoS2@PDA/PES MMMs.

Funder

Bureau of International Cooperation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3