Functionalization and Surface Modification of Mesoporous Hydrophobic Membranes by Oligomers and Target Additives via Environmental Crazing

Author:

Yarysheva Alena Yu.1ORCID,Klyamkin Semen N.1ORCID,Yarysheva Larisa M.1,Arzhakova Olga V.1

Affiliation:

1. Faculty of Chemistry, Lomonosov Moscow State University, Leninskiye Gory 1/3, 119991 Moscow, Russia

Abstract

This work offers an ecologically friendly and facile approach for the modification of high-tonnage commercial polymers, including polypropylene (PP), high-density polyethylene (HDPE), and poly(ethylene terephthalate) (PET), and preparation of nanocomposite polymeric membranes via incorporation of modifying oligomer hydrophilic additives, such as poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), polyvinyl alcohol (PVA), and salicylic acid (SA). Structural modification is accomplished via the deformation of polymers in PEG, PPG, and water-ethanol solutions of PVA and SA when mesoporous membranes are loaded with oligomers and target additives. The content of target additives in nanocomposite membranes is controlled by tensile strain, and the level of loading can achieve 35–62 wt.% for PEG and PPG; the content of PVA and SA is controlled by their concentration in the feed solution. This approach allows for the simultaneous incorporation of several additives which are shown to preserve their functional performance in the polymeric membranes and their functionalization. The porosity, morphology, and mechanical characteristics of the prepared membranes were studied. The proposed approach allows an efficient and facile strategy for the surface modification of hydrophobic mesoporous membranes: depending on the nature and content of target additives, their water contact angle can be reduced to 30–65°. Water vapor permeability, gas selectivity, antibacterial, and functional properties of the nanocomposite polymeric membranes were described.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3