Effects of Different Draw Solutions on Biogas Slurry Concentration in Forward Osmosis Membrane: Performance and Membrane Fouling

Author:

Li YunORCID,Xie Xiaomin,Yin Rongxiu,Dong Qingzhao,Wei Quanquan,Zhang BangxiORCID

Abstract

Biogas slurry poses a severe challenge to the sustainable management of livestock farms. The technology of the forward osmosis (FO) membrane has a good application prospect in the field of biogas slurry concentration. Further research is needed to verify the effects of different draw solutions on FO membranes in biogas slurry treatment and the related membrane fouling characteristics. In this study, three different draw solutions were selected to evaluate the performance of FO membranes for biogas slurry concentration. Membrane fouling was investigated by characterization after FO membrane treatment to identify fouling contaminants. The result showed that FO membrane treatment can realize the concentration of biogas slurry and MgCl2 as the draw solution has the best effect on the concentration of biogas slurry. The different draw solutions all contributed to the efficient retention of most organics and TP while each treatment was ineffective at retaining nitrogen. The cake layer that appeared after the biogas slurry was concentrated covered the surface of the FO membrane. Some functional groups were detected on the surface after membrane fouling, such as C–O and C=C. Moreover, the C element accounts for 57% of the main components of the cake layer after the membrane fouling. Membrane fouling is caused by both organic fouling and inorganic fouling, of which organic fouling is the main reason. This study provides a technical reference for the high-value utilization of biogas slurry.

Funder

the Science and Technology Plan Project Foundation of Guizhou province

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3