Features of the Degradation of the Proton-Conducting Polymer Nafion in Highly Porous Electrodes of PEM Fuel Cells

Author:

Nechitailov Andrey A.1,Volovitch Polina23,Glebova Nadezhda V.1ORCID,Krasnova Anna12ORCID

Affiliation:

1. Ioffe Institute, St. Petersburg 194021, Russia

2. Institut de Recherche de Chimie Paris (IRCP), Chimie ParisTech, PSL Research University, CNRS, 75005 Paris, France

3. Institut Photovoltaique Ile de France (IPVF), CNRS, Ecole Polytechnique, IPParis, Chimie ParisTech, PSL University, IPVF SAS, 91120 Palaiseau, France

Abstract

The stability of new membrane–electrode assemblies of a proton-exchange membrane fuel cell with highly porous electrodes and low Pt loading, based on the proton-conducting polymer Nafion, was characterized in conditions of electrochemical aging. A comprehensive study of the effect of the microstructure on the evolution of the electrochemical characteristics of the new assemblies was obtained by voltammetry, electrochemical impedance spectroscopy, X-ray powder diffraction, and scanning electron microscopy. Because high (>70%) porosity provides intensive mass transfer inside an electrode, structural-modifying additives—long carbon nanotubes—were introduced into the new electrodes. PEM fuel cells with electrodes of a conventional composition without carbon nanotubes were used for comparison. The aging of the samples was carried out according to the standard accelerated method in accordance with the DOE (Department of Energy) protocols. The results show two fundamental differences between the degradation of highly porous electrodes and traditional ones: 1. in highly porous electrodes, the size of Pt nanoparticles increases to a lesser extent due to recrystallization; 2. a more intense “washout” of Nafion and an increase in ionic resistance occur in highly porous electrodes. Mechanisms of the evolution of the characteristics of structurally modified electrodes under electrochemical aging are proposed.

Funder

Russian Science Foundation

St. Petersburg Science Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3