Comparison of Energy Efficiency between Atmospheric Batch Pressure-Retarded Osmosis and Single-Stage Pressure-Retarded Osmosis

Author:

Li Dan12,Mo Zijing123ORCID,She Qianhong12

Affiliation:

1. School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

2. Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One, #06-08, Singapore 637141, Singapore

3. Interdisciplinary Graduate Programme, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore

Abstract

Batch pressure-retarded osmosis (PRO) with varied-pressure and multiple-cycle operation using a pressurized variable-volume tank has been proposed as a high-efficiency osmotic energy harvesting technology, but it suffers scalability constraints. In this study, a more scalable batch PRO, namely, atmospheric batch PRO (AB-PRO), was proposed, utilizing an atmospheric tank to receive and store the intermediate diluted draw solution (DS) and a pressure exchanger to recover the pressure energy from the diluted DS before being recycled into the tank. Its performance was further compared with single-stage PRO (SS-PRO) at different flow schemes via analytic models. The results show that the AB-PRO with an infinitesimal per-cycle water recovery (r) approaches the thermodynamic maximum energy production under ideal conditions, outperforming the SS-PRO with lower efficiencies caused by under-pressurization (UP). However, when considering inefficiencies, a ~40% efficiency reduction was observed in AB-PRO owing to UP and entropy generation as the optimal r is no-longer infinitesimal. Nonetheless, AB-PRO is still significantly superior to SS-PRO at low water recoveries (R) and maintains a stable energy efficiency at various R, which is conducive to meeting the fluctuating demand in practice by flexibly adjusting R. Further mitigating pressure losses and deficiencies of energy recovery devices can significantly improve AB-PRO performance.

Funder

Ministry of Education, Singapore

Singapore Energy Centre

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference39 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3