Affiliation:
1. Institute for Automation Technology, Faculty of Electro Engineering and Information Technology, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
Abstract
Natural wrinkling of metal films on silicone substrates can appear by means of the metal sputtering process and can be described by the continuous elastic theory and non-linear wrinkling model. Here, we report the fabrication technology and behavior of thin freestanding Polydimethylsiloxane (PDMS) membranes equipped with thermo-electric meander-shaped elements. The Cr/Au wires were obtained on the silicone substrate by magnetron sputtering. We observe wrinkle formation and suppose furrows appear once PDMS returns to its initial state after the thermo-mechanical expansion during sputtering. Although the substrate thickness is usually a negligible parameter in the theory of wrinkle formation, we found that the self-assembled wrinkling architecture of the PDMS/Cr/Au varies due to the membrane thickness of 20 µm and 40 µm PDMS. We also demonstrate that the wrinkling of the meander wire affects its length, and it causes a 2.7 times higher resistance compared to a calculated value. Therefore, we investigate the influence of the PDMS mixing ratio on the thermo-electric meander-shaped elements. For the stiffer PDMS with a mixing ratio of 10:4, the resistance due to wrinkle amplitude alterations is 25% higher compared to the PDMS of ratio 10:1. Additionally, we observe and describe a thermo-mechanically induced motion behavior of the meander wires on completely freestanding PDMS membrane under applied current. These results can improve the understanding of wrinkle formation, which influences thermo-electric characteristics and may promote the integration of this technology in applications.
Funder
German Federal Ministry of Economics and Climate Protection
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology