Bio-Based Ceramic Membranes for Bacteria Removal from Water

Author:

Kamgang-Syapnjeu Pelagie,Njoya Dayirou,Kamseu ElieORCID,Balme SebastienORCID,Bechelany MikhaelORCID,Soussan LaurenceORCID

Abstract

Bio-based ceramic membranes were elaborated from kaolinite clays, coconut husks and eggshells to retain E. coli bacteria present in water intended for human consumption. Their characterization and removal performances are investigated in this work. These bio-ceramic membranes were obtained by heating the formulation containing 75% clay, 15% coconut husk and 10% eggshell at 900 °C or 1000 °C, at different temperature rates, to give S1, S2 and S3 materials. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), mercury porosimetry and scanning electron microscopy (SEM) were used to characterize these membranes. Water flux density, bacterial removal and biofouling were also assessed. Water flux density was shown to depend on material porosity. Bacteria retention was 90% (with 1 log-removal) for S1, 80% (with 0.7 log-removal) for S2 and 100% (with 3.3 log-removal) for S3. Membranes S1 and S2 presented reversible biofouling, while no fouling was evidenced for S3 in the tested conditions. This work shows that the best bio-ceramic membrane in terms of bacterial removal and flux density was S3. Its water flux density was 2123 ± 72 L/h/m2 at an initial pressure of 0.2 bar. This material is particularly interesting because its production protocol is quite simple, fast and without the addition of chemical additives. Moreover, it can be used to efficiently remove bacteria from drinking water.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference32 articles.

1. L’eau et les Changements Climatiques, Rapport Mondial des Nations Unies sur la Mise en Œuvre des Ressources en Eau,2020

2. Microbial Contamination of Drinking Water and Human Health from Community Water Systems

3. Edition of the Drinking Water Standards and Health Advisories,2012

4. Chapter 1 General overview, trends and prospects

5. Preparation and characterization of ultrafiltration membranes for toxic removal from wastewater

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3