Investigation of NH3 Desorption Kinetics on the LTA and SOD Zeolite Membranes

Author:

Gordina Natalya E.ORCID,Borisova Tatyana N.,Klyagina Ksenya S.,Astrakhantseva Irina A.,Ilyin Alexander A.,Rumyantsev Ruslan N.

Abstract

The acidity characteristics of zeolite are highly significant, and understanding the acidic properties is essential for developing new types of zeolite catalysts. Zeolite membranes were synthesized using metakaolin, sodium hydroxide, and alumina with a molar ratio of 6Al2Si2O7:12NaOH:2Al2O3 as the starting ingredients. X-ray diffraction, scanning electron microscopy, and infrared spectroscopy were used for this study. N2 adsorption measurements determined the surface areas of the SOD zeolite membrane (115 m2/g) and the LTA membrane (150 m2/g). The units of absorbed water vapor were 40 and 60 wt% for the SOD membrane and the LTA membrane, respectively. The strength and number of acid sites of the synthesized LTA and SOD zeolite membranes were determined by temperature-programmed desorption of ammonia. As a result, the value of the total acidity of the LTA zeolite membrane is in the range of 0.08 × 1019 units/m2 while that of the sodalite membrane is an order of magnitude lower and is 0.006 × 1019 units/m2. The apparent activation energy values for desorption of ammonia from LTA and SOD zeolite membranes were calculated using data on the kinetics of desorption of ammonia at different heating rates. It was found that at temperatures below 250 °C, the degree of conversion of the activation energy values is no more than 35 kJ/mol, which corresponds to the desorption of physically bound ammonia. An increase in the activation values up to 70 kJ/mol (for SOD) and up to 80 kJ/mol (for LTA) is associated with the desorption of chemically bound ammonia from the samples.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3