Characterization of Antimicrobial Composite Edible Film Formulated from Fermented Cheese Whey and Cassava Peel Starch

Author:

Utama Gemilang LaraORCID,Dinika Isfari,Nurmilah SitiORCID,Masruchin NanangORCID,Nurhadi Bambang,Balia Roostita Lobo

Abstract

Antimicrobial composite edible film can be a solution for environmentally friendly food packaging, which can be made from fermented cheese whey containing an antimicrobial agent and cassava peel waste that contains starch. The research aims to determine the formulation of fermented cheese whey and cassava peel waste starch, resulting in an antimicrobial composite edible film with the best physical, mechanical, and water vapour permeability (WVP) properties, as well as with high antimicrobial activity. This research was conducted using experimental methods with nine composite edible film formulation treatments with three replications. Three variations in the fermented cheese whey and cassava peel starch ratio (v/v) (1:3, 1:1, 3:1) were combined with variations in the addition of glycerol (20%, 33%, 45%) (w/w) in the production of the composite edible film. Then, the physical characteristics such as elongation at break, tensile strength, WVP, colour, and antimicrobial effect of its film-forming solution were observed. The results showed that 24 h of whey fermentation with Candida tropicalis resulted in an 18.50 mm inhibition zone towards Pseudomonas aeruginosa. The best characteristic of the film was obtained from the formulation of a whey:starch ratio of 1:3 and 33% glycerol, which resulted in a thickness value of 0.21 mm, elongation at break of 19.62%, tensile strength of 0.81 N/mm2, WVP of 3.41 × 10−10·g/m·s·Pa at a relative humidity (RH) of 100%–35%, and WVP of 9.84 × 10−10·g/m·s·Pa at a RH of 75%–35%, with an antimicrobial activity towards P. aeruginosa of 5.11 mm.

Funder

Directorate of Research and Community Services, the Ministry of Research, Technology and Higher Education the Republic of Indonesia

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3