Plant Sterol Clustering Correlates with Membrane Microdomains as Revealed by Optical and Computational Microscopy

Author:

Tang Ling,Li Yang,Zhong Cheng,Deng Xin,Wang XiaohuaORCID

Abstract

Local inhomogeneities in lipid composition play a crucial role in the regulation of signal transduction and membrane traffic. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids. Nevertheless, most evidence for microdomains in cells remains indirect, and the nature of membrane inhomogeneities has been difficult to characterize. We used a new push–pull pyrene probe and fluorescence lifetime imaging microscopy (FLIM) combined with all-atom multiscale molecular dynamics simulations to provide a detailed view on the interaction between phospholipids and phytosterol and the effect of modulating cellular phytosterols on membrane-associated microdomains and phase separation formation. Our understanding of the organization principles of biomembranes is limited mainly by the challenge to measure distributions and interactions of lipids and proteins within the complex environment of living cells. Comparing phospholipids/phytosterol compositions typical of liquid-disordered (Ld) and liquid-ordered (Lo) domains, we furthermore show that phytosterols play crucial roles in membrane homeostasis. The simulation work highlights how state-of-the-art modeling alleviates some of the prior concerns and how unrefuted discoveries can be made through a computational microscope. Altogether, our results support the role of phytosterols in the lateral structuring of the PM of plant cells and suggest that they are key compounds for the formation of plant PM microdomains and the lipid-ordered phase.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3