Exploring the Conformational Changes Induced by Nanosecond Pulsed Electric Fields on the Voltage Sensing Domain of a Ca2+ Channel

Author:

Ruiz-Fernández Alvaro R.,Campos Leonardo,Villanelo FelipeORCID,Gutiérrez-Maldonado Sebastian E.ORCID,Perez-Acle Tomas

Abstract

Nanosecond Pulsed Electric Field (nsPEF or Nano Pulsed Stimulation, NPS) is a technology that delivers a series of pulses of high-voltage electric fields during a short period of time, in the order of nanoseconds. The main consequence of nsPEF upon cells is the formation of nanopores, which is followed by the gating of ionic channels. Literature is conclusive in that the physiological mechanisms governing ion channel gating occur in the order of milliseconds. Hence, understanding how these channels can be activated by a nsPEF would be an important step in order to conciliate fundamental biophysical knowledge with improved nsPEF applications. To get insights on both the kinetics and thermodynamics of ion channel gating induced by nsPEF, in this work, we simulated the Voltage Sensing Domain (VSD) of a voltage-gated Ca2+ channel, inserted in phospholipidic membranes with different concentrations of cholesterol. We studied the conformational changes of the VSD under a nsPEF mimicked by the application of a continuous electric field lasting 50 ns with different intensities as an approach to reveal novel mechanisms leading to ion channel gating in such short timescales. Our results show that using a membrane with high cholesterol content, under an nsPEF of 50 ns and E→ = 0.2 V/nm, the VSD undergoes major conformational changes. As a whole, our work supports the notion that membrane composition may act as an allosteric regulator, specifically cholesterol content, which is fundamental for the response of the VSD to an external electric field. Moreover, changes on the VSD structure suggest that the gating of voltage-gated Ca2+ channels by a nsPEF may be due to major conformational changes elicited in response to the external electric field. Finally, the VSD/cholesterol-bilayer under an nsPEF of 50 ns and E→ = 0.2 V/nm elicits a pore formation across the VSD suggesting a new non-reported effect of nsPEF into cells, which can be called a “protein mediated electroporation”.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference142 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3