Impact of a Graphene Oxide Reducing Agent on a Semi-Permeable Graphene/Reduced Graphene Oxide Forward Osmosis Membrane Filtration Efficiency

Author:

Romaniak GrzegorzORCID,Dybowski KonradORCID,Jędrzejczak AnnaORCID,Sobczyk-Guzenda AnnaORCID,Januszewicz BartłomiejORCID,Szymański WitoldORCID,Kowalczyk Paulina,Kaźmierczak Tomasz,Siniarski Jan,Kula PiotrORCID

Abstract

Graphene has been considered as a material that may overcome the limitations of polymer semi-permeable membranes in water treatment technology. However, monolayer graphene still suffers from defects that cause leakage. Here, we report a method of sealing defects in graphene transferred onto porous polymer substrate via reduced graphene oxide (rGO). The influence of various reducing agents (e.g., vitamin C, hydrazine) on the properties of rGO was investigated by SEM, Raman, FTIR, and XRD. Subsequently, membranes based on graphene/reduced graphene oxide were tested in a forward osmosis system using sodium chloride (NaCl). The effect of the effectiveness of the reduction of graphene oxide, the type and number of attached groups, the change in the distance between the rGO flakes, and the structure of this material were examined in terms of filtration efficiency. As a result, semi-permeable centimetre-scale membranes with ion blocking efficiency of up to 90% and water flux of 20 mL h−1 m−2 bar−1 were proposed.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3