Membrane BioReactor (MBR) Activated Sludge Surrogate Alternatives Carboxymethyl Cellulose and Xanthan Gum: A Statistical Analysis and Review

Author:

Ratkovich NicolásORCID,Amaya-Gómez RafaelORCID

Abstract

Membrane Bioreactors (MBR) combine traditional biological treatments such as Activated Sludge (AS) with a membrane-based filtration process to extract suspended and organic solids. MBR operation involves high shear rates near the membrane surface due to the high crossflow velocity, which complicates any simulation process from a hydrodynamic point of view. In this regard, the viscosity as a function of total suspended solids (TSS) plays an essential role in characterizing and modeling the behavior of activated sludge (AS). However, AS has an intransparency property that prevents experimental measurements (i.e., velocity profiles) commonly associated with optical techniques from being peformed. In light of this limitation, two polymeric compounds, carboxymethyl cellulose (CMC) and xanthan gum (XG), are considered here in order to explore the possibility of mimicking the rheological behavior of AS. These compounds are commonly used in the food industry as food thickeners, and their rheological behavior is supposedly well defined in the literature. In this work, we reviewed the viscosity behavior of these compounds through their reported flow behavior and consistency indexes. It was found that the rheological properties of these two polymers differ depending on the chemical manufacturer, rheometers, and measurement protocols involved. Different curves (shear rate vs. viscosity/shear stress) are obtained, as each device and procedure seem to modify the polymer structure. Therefore, a statistical analysis was performed based on the flow and consistency indexes using different concentrations and temperatures reported in experimental data. Several insights regarding CMC, XG, and AS performance were obtained, including a better relationship with concentration than with temperature or certain exponential-based performances, which can support further MBR design and operational decision-making.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3