Trimerization of the N-Terminal Tail of Zika Virus NS4A Protein: A Potential In Vitro Antiviral Screening Assay

Author:

To JanetORCID,Torres JaumeORCID

Abstract

The nonstructural (NS) protein NS4A in flaviviruses is a membrane protein that is critical for virulence, and, among other roles, it participates in membrane morphogenesis. In dengue virus (DENV), the NS4A hydrophilic N–terminal tail, together with the first transmembrane domain, is involved in both homo-oligomerization and hetero–oligomerization with NS4B. In both DENV and Zika virus (ZIKV), this N-terminal tail (residues 1–48) forms a random coil in solution but becomes mostly α-helical upon interaction with detergents or lipid membranes. Herein, we show that a peptide from ZIKV NS4A that spans residues 4–58, which includes most of the N–terminal tail and a third of its first transmembrane domain, forms homotrimers in the absence of detergents or liposomes. After interaction with the latter, α–helical content increases, consistent with binding. The oligomeric size of NS4A is not known, as it has only been reported in SDS gels. Therefore, we propose that full-length NS4A forms homotrimers mediated by this region, and that disruption of the oligomerization of peptide ZIKV NS4A 4–58 in solution can potentially constitute the basis for an in vitro assay to discover antivirals.

Funder

Singapore Ministry of Education

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3