Abstract
The modification of ion composition is important to meet product water quality requirements, such as adjusting the sodium adsorption ratio of reclaimed water for irrigation. Bench- and pilot-scale experiments were conducted using an electrodialysis reversal (EDR) system with Ionics normal grade ion-exchange membranes (CR67 and AR204) to treat the reclaimed water in the Scottsdale Water Campus, Arizona. The goal is to investigate the impact of operating conditions on improving reclaimed water quality for irrigation and stream flow augmentation. The desalting efficiency, expressed as electrical conductivity (EC) reduction, was highly comparable at the same current density between the bench- and pilot-scale EDR systems, proportional to the ratio of residence time in the electrodialysis stack. The salt flux was primarily affected by the current density independent of flow rate, which is associated with linear velocity, boundary layer condition, and residence time. Monovalent-selectivity in terms of equivalent removal of divalent ions (Ca2+, Mg2+, and SO42−) over monovalent ions (Na+, Cl−) was dominantly affected by both current density and water recovery. The techno-economic modeling indicated that EDR treatment of reclaimed water is more cost-effective than the existing ultrafiltration/reverse osmosis (UF/RO) process in terms of unit operation and maintenance cost and total life cycle cost. The EDR system could achieve 92–93% overall water recovery compared to 88% water recovery of the UF/RO system. In summary, electrodialysis is demonstrated as a technically feasible and cost viable alternative to treat reclaimed water for irrigation and streamflow augmentation.
Funder
U.S. Department of the Interior, Bureau of Reclamation
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献