Dimensional Transformation of Percolation Structure in Mixed-Matrix Membranes (MMMs)

Author:

Grekhov Alexey1,Eremin Yury1ORCID

Affiliation:

1. Molecular Physics Department, Moscow Engineering Physics Institute, National Research Nuclear University, 115409 Moscow, Russia

Abstract

A large number of studies of mixed-matrix membranes (MMMs) have confirmed the possibility of obtaining new materials with unique transport properties, including for solving specific problems in the separation of mixtures of liquids and gases. The choice of particles with a given affinity for the matrix and separable components allows researchers to adjust the selective properties of MMMs in a wide range, which changes the properties of MMMs in a wide range. However, even within the framework of the most complex percolation mechanism of the formation of the MMM structure, it is possible to explain only some of the observed effects. In particular, questions about the required particle concentration and fluctuation of properties in various MMM samples are still the subject of research. The results of the numerical modeling of such structures presented in this paper determined the possible causes of the observed deviations of the experimental results, for example, particle size dispersion, agglomeration, and interaction with the matrix. According to our research, the key factor that qualitatively changes the parameters of percolation structures is the ratio of the geometric dimensions of the system. We have confirmed in a wide range a significant change in the conditions of cluster formation and its power at different particle diameters and lengths (traditional parameters in percolation studies). But in our work, we additionally studied the effect on the cluster parameters of the interfacial layer and the anisotropy of the matrix (the transition from the cube to the film). The results obtained show that changing the parameters of the matrix–particle interaction affects agglomeration, and the degradation of the percolation structure is possible. That is, with an increase in concentration, the parameters of the percolation cluster, its power, and the probability of formation, may decrease. But even more negative changes in percolation structures are observed during the transition from a volumetric matrix to films. The anisotropy of space leads to the formation of percolation through the film in certain areas at low concentrations of particles. At the same time, in a significant part of the matrix, percolation between the film surfaces will be absent, and the effect of changing the properties of MMMs in the matrix as a whole decreases. Our study explains the observed instability of MMM properties at fixed concentrations and parameters of embedded particles, including the effect of reducing the influence of particles with increasing concentration.

Funder

MEPhI Program Priority 2030

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3