Facile Preparation of Durable and Eco-Friendly Superhydrophobic Filter with Self-Healing Ability for Efficient Oil/Water Separation

Author:

Voo Wei Xin1,Chong Woon Chan12,Teoh Hui Chieh12,Lau Woei Jye3,Chan Yi Jing4ORCID,Chung Ying Tao5

Affiliation:

1. Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia

2. Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Cheras, Kajang 43000, Selangor, Malaysia

3. Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia

4. Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia

5. Department of Chemical & Petroleum Engineering, Faculty of Engineering, Technology & Built Environment, UCSI University Kuala Lumpur Campus, Jalan Mandarina Damai 1, Cheras, Kuala Lumpur 56000, Malaysia

Abstract

The superhydrophobic feature is highly desirable for oil/water separation (OWS) operation to achieve excellent separation efficiency. However, using hazardous materials in fabricating superhydrophobic surfaces is always the main concern. Herein, superhydrophobic filters were prepared via an eco-friendly approach by anchoring silica particles (SiO2) onto the cotton fabric surface, followed by surface coating using natural material—myristic acid via a dip coating method. Tetraethyl orthosilicate (TEOS) was used in the synthesis of SiO2 particles from the silica sol. In addition, the impact of the drying temperature on the wettability of the superhydrophobic filter was investigated. Moreover, the pristine cotton fabric and as-prepared superhydrophobic cotton filters were characterised based on Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) and contact angle (CA) measurement. The superhydrophobic cotton filter was used to perform OWS using an oil-water mixture containing either chloroform, hexane, toluene, xylene or dichloroethane. The separation efficiency of the OWS using the superhydrophobic filter was as high as 99.9%. Moreover, the superhydrophobic fabric filter also demonstrated excellent durability, chemical stability, self-healing ability and reusability.

Funder

Ministry of Higher Education (MOHE), Malaysia

Advanced Membrane Technology Research Centre

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3