Effects of Benzalkonium Chloride Contents on Structures, Properties, and Ultrafiltration Performances of Chitosan-Based Nanocomposite Membranes

Author:

Khoerunnisa FitriORCID,Nurhayati MitaORCID,Annisa Noor Azmi Aulia,Fatimah Siti,Nashrah Nisa,Hendrawan Hendrawan,Ko Young-Gun,Ng Eng-PohORCID,Opaprakasit PakornORCID

Abstract

The effects of benzalkonium chloride (BKC) contents on the structure, properties, and ultrafiltration performance of chitosan-based nanocomposite membranes containing poly(ethylene glycol) and multi-walled carbon nanotube (chitosan/BKC/PEG/CNT) were examined. The membranes were prepared by a mixing solution method and phase inversion before being characterized with microscopic techniques, tensile tests, thermogravimetric analysis, water contact angle, and porosity measurements. The performance of the nanocomposite membranes in regard to permeability (flux) and permselectivity (rejection) was examined. The results show that the incorporation of BKC produced nanocomposite membranes with smaller pore structures and improved physico-chemical properties, such as an increase in porosity and surface roughness (Ra = 45.15 to 145.35 nm and Rq = 53.69 to 167.44 nm), an enhancement in the elongation at break from 45 to 109%, and an enhancement in the mechanical strength from 31.2 to 45.8 MPa. In contrast, a decrease in the membrane hydrophilicity (water contact angle increased from 56.3 to 82.8°) and a decrease in the average substructure pore size from 32.64 to 10.08 nm were observed. The membrane rejection performances toward Bovine Serum Albumin (BSA) increased with the BKC composition in both dead-end and cross-flow filtration processes. The chitosan/BKC/PEG/CNT nanocomposite membranes have great potential in wastewater treatments for minimizing biofouling without reducing the water purification performance.

Funder

Ministry of Education and Culture of Republic Indonesia

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3