Photoelectrochemical Hydrogen Production System Using Li-Conductive Ceramic Membrane

Author:

Rusetskyi Ihor A.,Kovalenko Leonid L.,Danilov Michail O.ORCID,Slobodyanyuk Ivan A.,Fomanyuk Sergii S.,Smilyk Vitaliy O.,Belous Anatolii G.,Kolbasov Gennadii Ya.

Abstract

Based on the LiLaTiO3 compound, a ceramic membrane for a photoelectrochemical cell was created. The microstructure, phase composition, and conductivity of a semiconductor photoelectrode and a ceramic membrane were studied by using various experimental methods of analysis. A ceramic Li conducting membrane that consisted of Li0.56La0.33TiO3 was investigated in solutions with different pH values. The fundamental possibility of creating a photoelectrochemical cell while using this membrane was shown. It was found that the lithium-conductive membrane effectively works in the photoelectrochemical system for hydrogen evolution and showed a good separating ability. When using a ceramic membrane, the pH in the cathode and anode chambers of the cell was stable during 3 months of testing. The complex impedance method was used to study the conductive ceramic membrane in a cell with separated cathode and anode chambers at different pH values of the electrolyte. The ceramic membrane shows promise for use in photoelectrochemical systems, provided that its resistivity is reduced (due to an increase in area and a decrease in thickness).

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3