Three-Phase Three-Dimensional Electrochemical Process for Efficient Treatment of Greywater

Author:

Li Weiyang,Wang Wei,Zhang Peng

Abstract

Water shortages around the world have intensified the search for substitute sources. Greywater can serve as a solution for water requirements. Compared to two-dimensional electrochemical processes for water treatment, the addition of particle activated carbon enhances the conductivity and mass transfer or the adsorption of pollutants in a three-dimensional (3D) electrochemical process. The large specific surface areas of these particles can provide more reactive sites, resulting in a higher removal efficiency. In this study, the treatment of greywater by the electro-Fenton (E-Fenton) method was carried out in a 3D electrolytic reactor. The effects of the operating conditions, such as electrode spacing, applied voltage, treatment time, and activated carbon loading, on the efficacy of the E-Fenton process were investigated, and the corresponding optimum conditions were found to be 7 cm, 9 V, 2 h, and 10 g. The results showed that CODCr removal of greywater treated using the 3D electrochemical process was 85%. With the help of the Box–Behnken experiment design and the response surface methodology, the parameters were optimized to determine the optimal conditions. The results of the response surface analysis were consistent with the experimental results. The above findings illustrate that the proposed three-phase 3D electrochemical process is feasible for the efficient treatment of greywater.

Funder

Introduction and Cultivation of leading Innovative talents in Changzhou city

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3