Author:
Li Weiyang,Wang Wei,Zhang Peng
Abstract
Water shortages around the world have intensified the search for substitute sources. Greywater can serve as a solution for water requirements. Compared to two-dimensional electrochemical processes for water treatment, the addition of particle activated carbon enhances the conductivity and mass transfer or the adsorption of pollutants in a three-dimensional (3D) electrochemical process. The large specific surface areas of these particles can provide more reactive sites, resulting in a higher removal efficiency. In this study, the treatment of greywater by the electro-Fenton (E-Fenton) method was carried out in a 3D electrolytic reactor. The effects of the operating conditions, such as electrode spacing, applied voltage, treatment time, and activated carbon loading, on the efficacy of the E-Fenton process were investigated, and the corresponding optimum conditions were found to be 7 cm, 9 V, 2 h, and 10 g. The results showed that CODCr removal of greywater treated using the 3D electrochemical process was 85%. With the help of the Box–Behnken experiment design and the response surface methodology, the parameters were optimized to determine the optimal conditions. The results of the response surface analysis were consistent with the experimental results. The above findings illustrate that the proposed three-phase 3D electrochemical process is feasible for the efficient treatment of greywater.
Funder
Introduction and Cultivation of leading Innovative talents in Changzhou city
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献