Wearable Crop Sensor Based on Nano-Graphene Oxide for Noninvasive Real-Time Monitoring of Plant Water

Author:

Li DenghuaORCID,Li Ganqiong,Li Jianzheng,Xu Shiwei

Abstract

Real-time noninvasive monitoring of crop water information is an important basis for water-saving irrigation and precise management. Nano-electronic technology has the potential to enable smart plant sensors to communicate with electronic devices and promote the automatic and accurate distribution of water, fertilizer, and medicine to improve crop productivity. In this work, we present a new flexible graphene oxide (GO)-based noninvasive crop water sensor with high sensitivity, fast responsibility and good bio-interface compatibility. The humidity monitoring sensitivity of the sensor reached 7945 Ω/% RH, and the response time was 20.3 s. We first present the correlation monitoring of crop physiological characteristics by using flexible wearable sensors and photosynthesis systems, and have studied the response and synergistic effect of net photosynthetic rate and transpiration rate of maize plants under different light environments. Results show that in situ real-time sensing of plant transpiration was realized, and the internal water transportation within plants could be monitored dynamically. The synergistic effect of net photosynthetic rate and transpiration of maize plants can be jointly tested. This study provides a new technical method to carry out quantitative monitoring of crop water in the entire life cycle and build smart irrigation systems. Moreover, it holds great potential in studying individual plant biology and could provide basic support to carry out precise monitoring of crop physiological information.

Funder

Scientific and technological innovation project of the Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3