Synthesis of Trimetallic Nanoparticle (NiCoPd)-Supported Carbon Nanofibers as a Catalyst for NaBH4 Hydrolysis

Author:

Abutaleb Ahmed1ORCID,Maafa Ibrahim M.1ORCID,Zouli Nasser1,Yousef Ayman12ORCID,El-Halwany M. M.3

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Jazan University, Jazan 11451, Saudi Arabia

2. Department of Mathematics and Physics Engineering, Faculty of Engineering at Mataria, Helwan University, Cairo 11718, Egypt

3. Department of Mathematics and Physics Engineering, Faculty of Engineering, Mansoura University, El-Mansoura 35516, Egypt

Abstract

The generation of H2 via the catalytic hydrolysis of sodium borohydride (SBH) has promise as a practical and secure approach to produce H2, a secure and environmentally friendly energy source for the foreseeable future. In this study, distinctive trimetallic NiCoPd nanoparticle-supported carbon nanofibers (NiCoPd tri-NPs@CNFs) is synthesized via sol-gel and electrospinning approaches. The fabricated trimetallic catalysts show an excellent catalytic performance for the generation of H2 from the hydrolysis of SBH. Standard physicochemical techniques were used to characterize the as-prepared NiCoPd tri-NPs@CNFs. The results show that NiCoPd tri-NPs@CNFs is formed, with an average particle size of about 21 nm. When compared to NiCo bimetallic NP @CNFS, all NiCoPd tri-NPs@CNFs formulations demonstrated greater catalytic activates for the hydrolysis of SBH. The improved catalytic activity may be due in the majority to the synergistic interaction between the three metals in the trimetallic architecture. Furthermore, the activation energy for the catalytic hydrolysis of SBH by the NiCoPd tri-NPs@CNFs was determined to be 16.30 kJ mol−1. The kinetics studies show that the reaction is of a first order with respect to the catalyst loading amount and a half order with respect to the SBH concentration [SBH].

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3