Penetration of Water-Soluble Material through Gas-Cleaning Filters

Author:

Schwarz Almuth D.ORCID,Meyer Jörg,Dittler AchimORCID

Abstract

To predict the behavior of gas-cleaning filters during real-world operation, it is essential to understand their response to ambient conditions. The temporary presence of water droplets in gas-cleaning filtration systems due to fog, spray rain, or condensation, as examples of irregular events, has an impact on the filters’ operating performance, especially when soluble particles are present. In this work, surface filters were loaded with mixtures of water-soluble salt particles and insoluble glass spheres. These were, subsequently, exposed to water mist and dried by a particle-free gas stream. A novel approach to analyze the drainage of solution on filters with soluble filter cakes is presented, which allows the detection of solubles on the clean gas side of the filter. As a result, this work, for the first time, presents a sighting of the penetration of soluble filter cake material through gas-cleaning filters. Furthermore, filter performance, in terms of differential pressure and fractional separation efficiency, was determined and a characteristic differential pressure evolution for hydrophilic filters during exposure to water mist was also identified. The fractional separation efficiency of gas-cleaning filters decreases due to exposure to water mist. The findings are supported by scanning electron microscopy (SEM) images, energy-dispersive X-ray (EDX), and X-ray microtomography (µ-CT analysis) images.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3