Experimental and Numerical Analysis of a Pd–Ag Membrane Unit for Hydrogen Isotope Recovery in a Solid Blanket

Author:

Narcisi Vincenzo1ORCID,Tamborrini Luca2,Farina Luca1ORCID,Cortese Gessica1,Romanelli Francesco2,Santucci Alessia1ORCID

Affiliation:

1. Fusion and Technology for Nuclear Safety and Security Department, ENEA, Via E. Fermi 45, 00044 Frascati, Italy

2. Department of Industrial Engineering, University of Rome “Tor Vergata”, Via del Politecnico 1, 00133 Rome, Italy

Abstract

The interest of the fusion community in Pd–Ag membranes has grown in the last decades due to the high value of hydrogen permeability and the possibility of continuous operation, making it a promising technology when a gaseous stream of hydrogen isotopes must be recovered and separated from other impurities. This is the case of the Tritium Conditioning System (TCS) of the European fusion power plant demonstrator, called DEMO. This paper presents an experimental and numerical activity aimed at (i) assessing the Pd–Ag permeator performance under TCS-relevant conditions, (ii) validating a numerical tool for scale-up purposes, and (iii) carrying out a preliminary design of a TCS based on Pd–Ag membranes. Experiments were performed by feeding the membrane with a He–H2 gas mixture in a specific feed flow rate ranging from 85.4 to 427.2 mol h−1 m−2. A satisfactory agreement between experiments and simulations was obtained over a wide range of compositions, showing a root mean squared relative error of 2.3%. The experiments also recognized the Pd–Ag permeator as a promising technology for the DEMO TCS under the identified conditions. The scale-up procedure ended with a preliminary sizing of the system, relying on multi-tube permeators with an overall number ranging between 150 and 80 membranes in lengths of 500 and 1000 mm each.

Funder

European Union

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3