Theoretical Model for the Prediction of Water Flux during the Concentration of an Olive Mill Wastewater Model Solution by Means of Forward Osmosis

Author:

Cifuentes-Cabezas Magdalena1ORCID,Álvarez-Blanco Silvia12ORCID,Mendoza-Roca José Antonio12,Vincent-Vela María Cinta12ORCID,Gozálvez-Zafrilla José M.12ORCID

Affiliation:

1. Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain

2. Department of Chemical and Nuclear Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Abstract

Currently, understanding the dynamics of the interaction between the agents in a process is one of the most important factors regarding its operation and design. Membrane processes for industrial wastewater management are not strangers to this topic. One such example is the concentration of compounds with high added value, such as the phenolic compounds present in olive mill wastewater (OMW). This process is a viable option, thanks to the forward osmosis (FO) process, osmotically driven by a saline stream. In this context, the transport of the solute and the solvent through the FO membranes, although essential to the process, remains problematic. This paper presents a study to predict, by means of a theoretical model, the water flux for two membranes (a cellulose triacetate flat sheet and a polyamide hollow fiber with integrated aquaporin proteins) with different characteristics using a sodium chloride solution as the draw solution (DS). The novelty of this model is the consideration of the contribution of organic compounds (in addition to the inorganic salts) to the osmotic pressure in the feed side. Moreover, the geometry of the modules and the characteristics of the membranes were also considered. The model was developed with the ability to run under different conditions, with or without tyrosol (the compound chosen as representative of OMW phenolic compounds) in the feed solution (FS), and was fitted and evaluated using experimental data. The results presented a variability in the model prediction, which was a function of both the membrane used and the FS and DS, with a greater influence of tyrosol observed on the permeate flux in the flat cellulose triacetate membrane.

Funder

MCIN/AEI

ERDF

EU

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3