SiO2 Modification of Silicon Carbide Membrane via an Interfacial In Situ Sol–Gel Process for Improved Filtration Performance

Author:

Shi Shuangjie12,Jian Kejie12,Fang Minfeng12ORCID,Guo Jian3,Rao Pinhua1,Li Guanghui12

Affiliation:

1. Innovation Centre for Environment and Resources, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China

2. China Petroleum and Chemical Industry Key Laboratory of Silicon Carbide Ceramic Membrane, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China

3. Shandong SiHYFLUX Membrane Technology Co., Ltd., 2252 Yiwangfu North Road, Qingzhou 262500, China

Abstract

Silicon carbide (SiC) membrane has emerged as a promising class of inorganic ceramic membranes with many advantageous attributes and has been used for a variety of industrial microfiltration (MF) processes. The state-of-the-art industrial manufacturing of SiC membranes based on the particle sintering method can only achieve an average pore size that ranges from 40 nm to a few micrometers, which is still unsatisfactory for ultrafiltration (UF) applications. Thus, the pore size control of SiC membranes remains a focus of continuing study. Herein, we provide an in situ sol–gel modification strategy to tailor the pore size of SiC membranes by a superficial deposition of SiO2 onto the membrane surface and membrane pore channels. Our in situ sol–gel modification method is simple and effective. Furthermore, the physical characteristics and the filtration performance of the membrane can easily be controlled by the in situ reaction time. With an optimal in situ reaction time of 30 min, the average pore size of the membrane can be reduced from macropores (400 nm) to mesopores (below 20 nm), and the retention ability for 20 nm fluorescent PS microspheres can be improved from 5% to 93%; the resultant SiC/SiO2 composite membranes are imparted with water permeance of 77 L·m−2·h−1·bar−1, improved anti-protein-fouling properties, excellent performance, and anti-acid stabilities. Therefore, modified SiC/SiO2 membranes based on the in situ sol–gel process have great potential as UF membranes for a variety of industrial processes.

Funder

Capacity Building Project of Some Local Colleges and Universities in Shanghai

Open Project of Shanghai Key Laboratory of Critical Materials for Integrated Circuits

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3