A Mini Review of Ceramic-Based MOF Membranes for Water Treatment

Author:

Wang Xueling1,Wang Man1,Chen Mingliang2ORCID,Zhang Yatao1

Affiliation:

1. School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China

2. Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

Abstract

Ceramic membranes have been increasingly employed in water treatment owing to their merits such as high-stability, anti-oxidation, long lifespan and environmental friendliness. The application of ceramic membranes mainly focuses on microfiltration and ultrafiltration processes, and some precise separation can be achieved by introducing novel porous materials with superior selectivity. Recently, metal–organic frameworks (MOFs) have developed a wide spectrum of applications in the fields of the environment, energy, water treatment and gas separation due to the diversity and tunable advantages of metal clusters and organic ligands. Although the issue of water stability in MOF materials inhibits the development of MOF membranes in water treatment, researchers still overcome many obstacles to advance the application of MOF membranes in water treatment processes. To the best of our knowledge, there is still a lack of a reviews on the development process and prospects of ceramic-based MOF membranes for water treatment. Therefore, in this review, we mainly summarize the fabrication method for ceramic-based MOF membranes and their application in water treatment, such as water/salt separation, pollutant separation, heavy metal separation, etc. Following this, based on the high structural, thermal and chemical stability of ceramic substrates, and the high controllability of MOF materials, the superiority and insufficient use of ceramic-based MOF membranes in the field of water treatment are critically discussed.

Funder

China Postdoctoral Science Foundation

Zhengzhou University

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3