Porous Hydrophobic–Hydrophilic Composite Hollow Fiber and Flat Membranes Prepared by Plasma Polymerization for Direct Contact Membrane Distillation

Author:

Sharma Ashok K.,Juelfs AdamORCID,Colling Connor,Sharma Saket,Conover Stephen P.,Puranik Aishwarya A.,Chau John,Rodrigues Lydia,Sirkar Kamalesh K.

Abstract

High water vapor flux at low brine temperatures without surface fouling is needed in membrane distillation-based desalination. Brine crossflow over surface-modified hydrophobic hollow fiber membranes (HFMs) yielded fouling-free operation with supersaturated solutions of scaling salts and their precipitates. Surface modification involved an ultrathin porous polyfluorosiloxane or polysiloxane coating deposited on the outside of porous polypropylene (PP) HFMs by plasma polymerization. The outside of hydrophilic MicroPES HFMs of polyethersulfone was also coated by an ultrathin coating of porous plasma-polymerized polyfluorosiloxane or polysiloxane rendering the surface hydrophobic. Direct contact membrane distillation-based desalination performances of these HFMs were determined and compared with porous PP-based HFMs. Salt concentrations of 1, 10, and 20 wt% were used. Leak rates were determined at low pressures. Surface and cross-sections of two kinds of coated HFMs were investigated by scanning electron microscopy. The HFMs based on water-wetted MicroPES substrate offered a very thin gas gap in the hydrophobic surface coating yielding a high flux of 26.4–27.6 kg/m2-h with 1 wt% feed brine at 70 °C. The fluxes of HFMs on porous PP substrates having a long vapor diffusion path were significantly lower. Coated HFM performances have been compared with flat hydrophilic membranes of polyvinylidene fluoride having a similar plasma-polymerized hydrophobic polyfluorosiloxane coating.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3