Author:
Alavijeh Hossein Nouri,Baltus Ruth E.
Abstract
In this paper, predictions from a theoretical model describing the rejection of a rigid spherical solute from porous membranes are compared to experimental results for a single stranded DNA (ssDNA) with 60 thymine nucleotides. Experiments were conducted with different pore size track-etched membranes at different transmembrane pressures and different NaCl concentrations. The model includes both hydrodynamic and electrostatic solute–pore wall interactions; predictions were made using different size parameters for the ssDNA (radius of gyration, hydrodynamic radius, and root mean square end-to-end distance). At low transmembrane pressures, experimental results are in good agreement with rejection predictions made using the hard sphere model for the ssDNA when the solute size is described using its root mean square end-to-end distance. When the ssDNA size is characterized using the radius of gyration or the hydrodynamic radius, the hard sphere model under-predicts rejection. Not surprisingly, the model overestimates ssDNA rejection at conditions where flow induced elongation of the DNA is expected. The results from this study are encouraging because they mean that a relatively simple hindered transport model can be used to estimate the rejection of a small DNA from porous membranes.
Funder
National Science Foundation
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献