A Study of Ralex Membrane Morphology by SEM

Author:

Akberova Elmara M.ORCID,Vasil’eva Vera I.,Zabolotsky Victor I.,Novak Lubos

Abstract

A comparative analysis of the effect of the manufacturing technology of heterogeneousion-exchange membranes Ralex CM Pes manufactured by MEGA a.s. (Czech Republic) on the structural properties of their surface and cross section by SEM was carried out. The CM Pes membrane is a composite of a sulfonated ion-exchanger with inert binder of polyethylene and reinforcing polyester fiber. In the manufacture of membranes Ralex the influence of two factors was investigated. First, the time of ion-exchange grain millingvaried at a constant resin/polyethylene ratio. Second, the ratio of the cation-exchanger and the inert binder of polyethylene varied. It has been found that the membrane surface becomes more electrically homogeneous with the growth of the ion-exchanger loading and a decrease in its particle size. With an increase in the milling time of resin grainsfrom 5 to 80 min a more than 1.5-fold decrease in their radius and in the distance between them was revealed.Besides, there is a 1.5-fold decrease in the fraction, as well as in the size of pores and structure defects. The fraction of the ion-exchange phase on the membrane surface decreases by 7%. With an increase in the resin loading from 45 to 70 wt %, the growth of the fraction of conducting regions on the surface is almost twofold, while their sizes remain practically unchanged. More significant changes in the surface structure of the studied membranes are established in comparison with the cross section. An increase in the resin content in the membranes from 45 to 70 wt % corresponds to a 43% increment of its fraction on the cross-section.The increase in the ion-exchanger content of Ralex membranes is accompanied by the growth of the fraction of macropores and structure defects on the membrane surface by 70% and a twofold decrease in the distance between conducting zones.

Funder

Council on grants of the President of the Russian Federation

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3