Abstract
The co-deposition between polyphenols and amines has been demonstrated in order to prepare positively charged nanofiltration (NF) membranes for multivalent cation rejection in recent years; however, the low reactivities of the involved polyphenols usually cause a long co-deposition time and unsatisfactory rejection. Herein, a novel plant polyphenol (PG) was co-deposited with tetraethylenepentamine (TEPA) in a much shorter time period to prepare positively charged NF with high multivalent cation rejection membranes. The performance of the co-deposition membranes can be easily controlled by adjusting the mass ratio of PG and TEPA, reaction time, and pH value of the buffer solution. The optimal membrane, prepared under a polyphenol and polyamine mass ratio of 1:1, coating time of 2 h, and pH value of 8.0, shows a decent pure water permeability of 8.43 L m−2 h−1 bar−1 while maintaining a superior 96.24% MgCl2 rejection. More importantly, the universality of this method was corroborated by employing other amines with different molecular weights in the co-deposition. This work provides new insights for the preparation of high-performance positively charged NF membranes.
Funder
Natural Science Foundation of Zhejiang Province
National College Students’ Innovative Entrepreneurial Training Plan Program
National Natural Science Foundation of China
Key Research and Development Program of Zhejiang Province
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献