Development of High Flux Nanocomposite Polyphenylsulfone/Oxidized Multiwalled Carbon Nanotubes Membranes for Ultrafiltration Using the Systems with Critical Solution Temperatures

Author:

Plisko Tatiana V.ORCID,Burts Katsiaryna S.ORCID,Bildyukevich Alexandr V.ORCID

Abstract

The study deals with the investigation of the effect of the modification of polyphenylsulfone (PPSU) flat sheet membranes for ultrafiltration using oxidized multiwalled carbon nanotubes (O-MWCNT) in order to enhance membrane permeability and antifouling performance. The effect of O-MWCNT loading to the PPSU-polyethylene glycol (PEG-20,000, Mn = 20,000 g·mol−1)-polyvinylpyrrolidone (PVP K-30, Mn = 40,000 g·mol−1)-N-methy-2-pyrrolidinone (NMP) colloid systems on the phase state and viscosity was studied. It was found that PPSU-PEG-20,000-PVP K-30-O-MWCNT-NMP colloid systems feature a gel point (T = 35–37 °C) and demixing temperature (T = 127–129 °C) at which two bulk phases are formed and a polymer system delaminates. According to the study of the phase state and viscosity of these colloid systems, a method for the preparation of high flux PPSU membranes is proposed which includes processing of the casting solution at the temperature higher than gel point (40 °C) and using a coagulation bath temperature lower than gel point (25 °C) or lower than demixing temperature (40 °C and 70 °C). Membrane structure, topology and hydrophilic-hydrophobic balance were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. The effect of coagulation bath temperature and O-MWCNT concentration on the membrane separation and antifouling performance in ultrafiltration of human serum albumin and humic acids solutions was studied. It was found that the modification of PPSU ultrafiltration membranes by O-MWCNTs yielded the formation of a thinner selective layer and hydrophilization of the membrane surface (water contact angle decreased from 53–56° for the reference PPSU membrane down to 33° for the nanocomposite membrane with the addition of 0.19 wt.% O-MWCNT). These changes resulted in the increase in membrane flux (from 203–605 L·m−2·h−1 at transmembrane pressure of 0.1 MPa for the reference membrane up to 512–983 L·m−2·h−1 for nanocomposite membrane with the addition of 0.19 wt.% O-MWCNT depending on coagulation bath temperature) which significantly surpasses the performance of PPSU ultrafiltration membranes reported to date while maintaining a high level of human serum albumin rejection (83–92%). It was revealed that nanocomposite membrane demonstrated better antifouling performance (the flux recovery ratio increased from 47% for the reference PPSU membrane up to 62% for the nanocomposite membrane) and higher total organic carbon removal compared to the reference PPSU membrane in humic acids solution ultrafiltration.

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3