Abstract
Mung bean (Vigna radiata) flour serves as an excellent biopolymer and a potential material for producing antioxidant and antimicrobial phyto-films. In addition to mung bean flour, this study also combined the longkong (Aglaia dookkoo Griff.) pericarp extract (LPE, 1.5%) and ultrasonication process (0 (C1), 2 (T1), 4 (T2), 6 (T3), 8 (T4), and 10 (T5) min, sonicated at 25 kHz, 100% amplitude) in film emulsion production to improve the antioxidant and antimicrobial efficiency in the phyto-films. This study showed that sonication increased the phyto-films’ color into more lightness and yellowness, and the intensity of the color changes was in accordance with the increased sonication time. Alternatively, the thickness, water vapor permeability, and solubility of the films were adversely affected by extended sonication. In addition, elongation at break and tensile strength increased while the Young modulus decreased in the phyto-films with the extended sonication. Furthermore, the droplet size and polydispersity index of the phyto-films decreased with extended sonication. Conversely, the zeta potential of the film tended to increase with the treatments. Furthermore, phytochemicals such as total phenolic content and total flavonoid contents, and the radical scavenging ability of phyto-films against the DPPH radical, ABTS radical, superoxide radical, hydroxyl radical, and ferrous chelating activity, were significantly higher, and they were steadily increased in the films with the extended sonication time. Furthermore, the phyto-films showed a significant control against Gram (-) pathogens, followed by Gram (+) pathogens. A higher inhibitory effect was noted against L. monocytogens, followed by S. aureus and B. subtilis. Similarly, the phyto-films also significantly inhibited the Gram (-) pathogens, and significant control was noted against C. jejuni, followed by E. coli and P. aeruginosa. Regardless of the mung bean flour, this study found that longkong pericarp extract and the sonication process could also effectively be used in the film emulsions to enhance the efficiency of the antioxidant and antimicrobial properties of phyto-films.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献