Optimization of Nanofiltration Hollow Fiber Membrane Fabrication Process Based on Response Surface Method

Author:

Wang Mingshu,Liu Chang,Fan Min,Liu Meiling,Shen Songtao

Abstract

Layer-by-layer (LBL) self-assembly technology has become a new research hotspot in the fabrication of nanofiltration membranes in recent years. However, there is a lack of a systematic approach for the assessment of influencing factors during the membrane fabrication process. In this study, the process optimization of LBL deposition was performed by a two-step statistical method. The multiple linear regression was performed on the results of single-factor experiments to determine the major influencing factors on membrane performance, including the concentration of Poly (allylamine hydrochloride) (PAH), glutaraldehyde, and the NaCl concentration in PAH solution. The Box–Behnken response surface method was then used to analyze the interactions between the selected factors, while their correlation with the membrane performance was obtained by polynomial fitting. The R2 value of the regression models (0.97 and 0.94) was in good agreement with the adjusted R2 value (0.93 and 0.86), indicating that the quadratic response models were adequate enough to predict the membrane performance. The optimal process parameters were finally determined through dual-response surface analysis to achieve both high membrane permeability of 14.3 LMH·MPa−1 and MgSO4 rejection rate of 90.22%.

Funder

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3