Enhancing Hydrogen Sulfide Detection at Room Temperature Using ZIF-67-Chitosan Membrane

Author:

Ali Ashraf1ORCID,Alzamly Ahmed2ORCID,Greish Yaser E.23ORCID,Alzard Reem H.2ORCID,El-Maghraby Hesham F.23ORCID,Qamhieh Naser1ORCID,Mahmoud Saleh T.1ORCID

Affiliation:

1. Department of Physics, United Arab Emirates University, Al-Ain 15551, United Arab Emirates

2. Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates

3. Department of Ceramics, National Research Centre, Cairo 68824, Egypt

Abstract

Developing new materials for energy and environment-related applications is a critical research field. In this context, organic and metal–organic framework (MOF) materials are a promising solution for sensing hazardous gases and saving energy. Herein, a flexible membrane of the zeolitic imidazole framework (ZIF-67) mixed with a conductivity-controlled chitosan polymer was fabricated for detecting hydrogen sulfide (H2S) gas at room temperature (RT). The developed sensing device remarkably enhances the detection signal of 15 ppm of H2S gas at RT (23 °C). The response recorded is significantly higher than previously reported values. The optimization of the membrane doping percentage achieved exemplary results with respect to long-term stability, repeatability, and selectivity of the target gas among an array of several gases. The fabricated gas sensor has a fast response and a recovery time of 39 s and 142 s, respectively, for 15 ppm of H2S gas at RT. While the developed sensing device operates at RT and uses low bias voltage (0.5 V), the requirement for an additional heating element has been eliminated and the necessity for external energy is minimized. These novel features of the developed sensing device could be utilized for the real-time detection of harmful gases for a healthy and clean environment.

Funder

United Arab Emirates University

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3