Author:
Yao Yue,Hou Changyu,Zhang Xin
Abstract
A promising α-FeOOH-reduced graphene oxide aerogel (FeOOH-GA) has been prepared for the assembly of an enzyme electrode. The α-FeOOH-reduced graphene oxide aerogel was characterized by X-ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The results reveal that graphene oxide is reduced by Fe2+ ion and α-FeOOH nanorods anchored on the reduced graphene oxide sheet through the Fe-O-C bond. Analyses using scanning electron microscopy and the Brunauer–Emmett–Teller method show that FeOOH-GA displays a various and interconnected pore structure. The FeOOH-GA was used as a support material on the glass carbon electrode (GCE) for glucose oxidase (GOD). Electrochemistry properties and bioelectrocatalytic activities of Nafion/GOD/FeOOH-GA/GCE were achieved from cyclic voltammetry and electrochemical impedance spectroscopy. The results show that Nafion/GOD/FeOOH-GA/GCE maintains outstanding catalytic activity and electrochemical properties. The FeOOH-GA could immobilize GOD through the hydrophobicity of the reduced graphene oxide and hydroxide radical of α-FeOOH. Appropriate α-FeOOH and diversified pore structure are beneficial for electron transfer, enzyme electrode storage, and interfacial electron transfer rate. All results indicated that the α-FeOOH-reduced graphene oxide aerogel as a carrier could effectively immobilize the tested enzyme.
Funder
the Innovating Key Item of Science and Technology, University of Guangdong Province
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献