RCCS Bioreactor-Based Modeled Microgravity Affects Gastric Cancer Cells and Improves the Chemotherapeutic Effect

Author:

Rembiałkowska NinaORCID,Baczyńska Dagmara,Dubińska-Magiera MagdaORCID,Choromańska AnnaORCID,Bieżuńska-Kusiak Katarzyna,Gajewska-Naryniecka AgnieszkaORCID,Novickij Vitalij,Saczko Jolanta,Przystupski DawidORCID,Kulbacka JulitaORCID

Abstract

(1) Background: The main purpose of the study was to determine whether altered gravity might alter cell viability, improve drug delivery and modulate the expression of drug resistance-related genes. (2) Methods: This study investigated the intracellular mechanisms activated by microgravity in human resistant and sensitive gastric cancer cells (EPG85-257 RDB) and (EPG85-257 P). We used a rotary cell culture system (RCCS) developed by NASA to expose cells to altered gravity. The antitumor potential of microgravity was simulated by the RCCS bioreactor, and its effectiveness was evaluated in sensitive cell lines compared to chemotherapy-resistant cells concerning drug-sensitive cancer cells. Microgravity with chemotherapy was estimated by the viability assay, cytoskeleton imaging, MDR (multidrug resistance) gene expression analysis, MTCO-1 (mitochondrially encoded cytochrome C oxidase I), and 8-OHdG immunocytochemical analysis. (3) Results: We found that altered gravity combined with doxorubicin was cytotoxic to cancer cells. Cells following simulated microgravity revealed decreased expression of genes related to drug resistance and increased DNA/RNA damage marker expression. Cytoskeleton evaluation demonstrated significant reorganization of F-actin fibers after exposure to changed gravity conditions. (4) Conclusions: Intracellular alterations caused by simulated microgravity can increase gastric cancer cells’ sensitivity to chemotherapy. We have obtained satisfactory results showing the correlation between altered gravity and MDR phenomena which seems promising in future therapeutic applications.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3