The Development and Study of Some Composite Membranes Based on Polyurethanes and Iron Oxide Nanoparticles

Author:

Gradinaru Luiza MadalinaORCID,Vlad StelianORCID,Ciobanu Romeo Cristian

Abstract

To improve the performance of composite membranes, their morphology can be tailored by precise control of the fabrication methods and processing conditions. To this end, the aim of this study was to develop novel high-performance composite membranes based on polyurethane matrix and magnetic nanoparticles with the desired morphology and stability, by selecting the proper method and fabrication systems. These well-prepared composite membranes were investigated from the point of view of their morphological, physico-chemical, mechanical, dielectric, and magnetic properties. In addition, their in vitro cytocompatibility was also verified by the MTT assay and their cell morphology. The results of this study can provide valuable information regarding the preparation of magnetic polyurethane-based composite membranes that could be used to design some suitable devices with tailored properties, in order to improve the image quality in magnetic resonance imaging investigations and to suppress local image artifacts and blurring.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3