Abstract
Herring milt hydrolysate (HMH), like many fish products, presents the drawback to be associated with off-flavors. As odor is an important criterion, an effective deodorization method targeting the volatile compounds responsible for off-flavors needs to be developed. The potential of electrodialysis (ED) to remove the 15 volatile compounds identified, in the first part of this work, for their main contribution to the odor of HMH, as well as trimethylamine, dimethylamine and trimethylamine oxide, was assessed by testing the impact of both hydrolysate pH (4 and 7) and current conditions (no current vs. current applied). The ED performance was compared with that of a deaerator by assessing three hydrolysate pH values (4, 7 and 10). The initial pH of HMH had a huge impact on the targeted compounds, while ED had no effect. The fouling formation, resulting from electrostatic and hydrophobic interactions between HMH constituents and ion-exchange membranes (IEM); the occurrence of water dissociation on IEM interfaces, due to the reaching of the limiting current density; and the presence of water dissociation catalyzers were considered as the major limiting process conditions. The deaerator treatment on hydrolysate at pH 7 and its alkalization until pH 10 led to the best removal of odorant compounds.
Subject
Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献