Al2O3-Based Hollow Fiber Membranes Functionalized by Nitrogen-Doped Titanium Dioxide for Photocatalytic Degradation of Ammonia Gas

Author:

Magnone EdoardoORCID,Hwang Jae Yeon,Shin Min Chang,Zhuang Xuelong,Lee Jeong In,Park Jung Hoon

Abstract

In recent years, reactive ammonia (NH3) has emerged as a major source of indoor air pollution. In this study, Al2O3-based hollow fiber membranes functionalized with nitrogen-doped titanium dioxide were produced and successfully applied for efficient heterogeneous photocatalytic NH3 gas degradation. Al2O3 hollow fiber membranes were prepared using the phase inversion process. A dip-coating technique was used to deposit titanium dioxide (TiO2) and nitrogen-doped titanium dioxide (N-TiO2) thin films on well-cleaned Al2O3-based hollow fiber membranes. All heterogeneous photocatalytic degradation tests of NH3 gas were performed with both UV and visible light irradiation at room temperature. The nitrogen doping effects on the NH3 heterogeneous photocatalytic degradation capacity of TiO2 were investigated, and the effect of the number of membranes (30, 36, 42, and 48 membranes) of the prototype lab-scale photocatalytic membrane reactor, with a modular design, on the performances in different light conditions was also elucidated. Moreover, under ultraviolet and visible light, the initial concentration of gaseous NH3 was reduced to zero after only fifteen minutes in a prototype lab-scale stage with a photocatalytic membrane reactor based on an N-TiO2 photocatalyst. The number of Al2O3-based hollow fiber membranes functionalized with N-TiO2 photocatalysts increases the capacity for NH3 heterogeneous photocatalytic degradation.

Funder

Korea Mistry of SMEs and Startups

Publisher

MDPI AG

Subject

Filtration and Separation,Chemical Engineering (miscellaneous),Process Chemistry and Technology

Reference26 articles.

1. Degradation of ammonia from gas stream by advanced oxidation processes;Koci;J. Environ. Sci. Health-Toxic/Hazard. Subst. Environ. Eng,2020

2. Costs of ammonia abatement: Summary, conclusions and policy context;Howard,2015

3. Treatment of Ammonia in Air Stream by Biotrickling Filter

4. Nitrogen-doped titanium dioxide: An overview of material design and dimensionality effect over modern applications

5. Heterogeneous Photocatalytic Degradation Kinetic of Gaseous Ammonia Over Nano-TiO2 Supported on Latex Paint Film

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3