Identification of Aggregates Quarries via Computer Vision Analysis as a Tool for Sustainable Aggregates Management and Land Planning

Author:

López-Acevedo Francisco J.12ORCID,Herrero María J.1ORCID,Escavy José I.3ORCID,Peláez Fernández Miguel A.2

Affiliation:

1. Departamento de Petrología y Mineralogía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid (UCM), Calle José Antonio Nováis, 12, 28040 Madrid, Spain

2. Indra Sistemas, Av. de Bruselas, 35, Alcobendas, 28108 Madrid, Spain

3. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid (UPM), Calle Profesor Aranguren s/n, 28040 Madrid, Spain

Abstract

The mineral raw materials industry is crucial for European industry, with the European Economic and Social Committee estimating that 70% of the industry relies directly or indirectly on its supply. In the context of a decarbonized and digitalized economy, the new European industrial model requires carbon-neutral raw materials and production processes. The crucial role of aggregates mining, as the primary construction material, emerges as a key supplier in this paradigm. Aggregates are the main component of the built environment and are a social and economic engine in most countries. Quarries of this type include a wide range of sizes and exploitation methods and use characteristic mining and processing equipment. Quarries are commonly close to their processing plants, which transform natural rock into crushed and ground materials with different grain sizes depending on the future uses. The quarry itself and the presence of certain equipment and facilities help distinguish it from mining sites that exploit other materials. Effective management of aggregates quarries is important in promoting circular economy practices, ensuring efficient management, reuse, and recycling of diverse wastes, including the recovery of high-value components and the production of recycled aggregates, and addressing construction and demolition waste (DCW) management. As aggregates become a progressively scarcer resource due to the increasing demand from developing countries, it is essential to provide reliable and comprehensive information on their potential to the public, policymakers, and other stakeholders to promote their use. This study focuses on employing artificial intelligence and computer vision analysis to automatically identify aggregates quarries from satellite images within continental Spain. A model has been trained to detect aggregates quarries from satellite images by computer vision. The model permits the detection of mining exploitation and the objects located at the interior, which permits determination of the type of mine and the activity status of it. The findings highlight the ability of artificial vision to discern quarries and distinguish whether the observed feature is an aggregates quarry. Additionally, the technology allows for the determination of the quarry’s operational status, distinguishing between active and abandoned quarries. The ability to detect the locations of quarries and assess their activity statuses is of significant value for resource exploration initiatives and location-allocation assessments. It can be a valuable tool for authorities involved in land planning, activities monitoring, and early detection of potential illegal mining activities. This analytical approach demonstrates substantial potential for various stakeholders, including mining companies, mining authorities, policymakers, and land use planners in both the private and public sectors.

Funder

Fundación General UCM

Fundación Agustín de Betancourt, Universidad Politécnica de Madrid

Publisher

MDPI AG

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3