Integrated Drip Irrigation Regulates Soil Water–Salt Movement to Improve Water Use Efficiency and Maize Yield in Saline–Alkali Soil

Author:

Wang Mengze12,Wang Rui1,Sun Quan1,Li Yulong1,Xu Lizhen3,Wang Yaqi1

Affiliation:

1. School of Agriculture, Ningxia University, Yinchuan 750021, China

2. Sinochem Environment Holdings Co., Ltd., Beijing 100045, China

3. Huaqing Agricultural Development Co., Ltd., Beijing 100084, China

Abstract

Soil salinization is a critical issue impacting agriculture, particularly in arid and semi-arid regions. The objective of this study was to evaluate the effects of different drip irrigation and fertilization treatments on soil water and salt dynamics, maize water use efficiency, and crop yield in the saline–alkali soils of northern Ningxia, China. Over three years, four irrigation treatments were tested: CK (flood irrigation, 810 mm), W1 (low-volume drip irrigation, 360 mm), W2 (medium-volume drip irrigation, 450 mm), and W3 (high-volume drip irrigation, 540 mm). The results demonstrate that treatments W2 and W3 significantly increased soil moisture content at depths of 0–20 cm and 60–100 cm compared to CK, facilitating uniform salt leaching in the 0–40 cm soil layer. However, in the 40–100 cm layer, decreased porosity and upward moisture movement hindered salt migration, resulting in subsurface salt accumulation. Furthermore, drip irrigation combined with fertilization significantly reduced phosphorus fixation and nitrogen leaching, enhancing nutrient availability. This led to a reduction in underground leakage and surface evaporation by up to 39.63%, while water use efficiency improved by 18.97% to 55.13%. By the third year, grain yields under drip irrigation treatments increased significantly compared to CK, with W3 showing the highest gains (up to 21.90%). This study highlights the potential of integrating drip irrigation and fertilization as an effective strategy for managing saline–alkali soils, improving water use, and increasing crop productivity, providing valuable insights for sustainable agricultural practices.

Funder

National key research and development program of China

The Ningxia Science and Technology Leading Talent Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3